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About the Cover:

The cover picture shows density (top row) and temperature (middle row) maps from 3-D ASTER simulations of a DT cryogenic 
implosion with a beam-to-target ratio of Rb/Rt = 0.75, and post-processed synthetic x-ray images (bottom row) for three different 
phases of the implosion: deceleration (left column), stagnation (middle column), and post-stagnation (explosion) (right column). These 
maps cover an area of 400 μm × 400 μm.  The low-density regions in the shell in the deceleration phase correspond to the regions of 
the shell that are broken during the stagnation and post-stagnation phases. The post-stagnation x-ray image correlates well with the 
density profile, where the brightest regions in the image correspond to the shell locations where material is being ejected. Compared to 
the deceleration and stagnation phases, the structures in the post-stagnation x-ray image are spatially larger and are easier to analyze.

Simulations predict that the coupling of the laser energy to the target can be increased by lowering Rb/Rt. This change, however, also 
increases beam-overlap perturbations that cause distortions in the dense shell and lead to shell breakup at stagnation. To diagnose the shell 
breakup, the x-ray self-emission from the implosions was recorded during the post-stagnation phase with a filtered 16-pinhole array imager 
and x-ray framing camera using an exposure time of ∼40 ps. The figure below shows experimental images obtained in implosions with 
different Rb/Rt. A Fourier decomposition is applied to the outer peak signal of the images to diagnose the low- and mid-mode asymme-
tries in the implosion. The images and modal analysis show higher low- and mid-mode amplitudes for the implosion with Rb/Rt ∼ 0.77 
compared with the implosion with Rb/Rt ∼ 0.95, which indicates a better hydrodynamic instability for the implosion with higher Rb/Rt.
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